Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
Add more filters










Publication year range
1.
Microbiol Resour Announc ; 13(2): e0087923, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38179914

ABSTRACT

Whole-genome sequences are presented for three Borrelia burgdorferi, a causative agent of Lyme disease in North America, isolated from Ixodes pacificus ticks collected in British Columbia, Canada. Shotgun DNA libraries were prepared with Illumina DNA Prep and sequenced using the MiniSeq platform. Genome assemblies enabled multilocus sequence typing and ospC typing.

2.
Foodborne Pathog Dis ; 2023 Nov 29.
Article in English | MEDLINE | ID: mdl-38032610

ABSTRACT

Salmonella is one of the main causes of human foodborne illness. It is endemic worldwide, with different animals and animal-based food products as reservoirs and vehicles of infection. Identifying animal reservoirs and potential transmission pathways of Salmonella is essential for prevention and control. There are many approaches for source attribution, each using different statistical models and data streams. Some aim to identify the animal reservoir, while others aim to determine the point at which exposure occurred. With the advance of whole-genome sequencing (WGS) technologies, new source attribution models will greatly benefit from the discriminating power gained with WGS. This review discusses some key source attribution methods and their mathematical and statistical tools. We also highlight recent studies utilizing WGS for source attribution and discuss open questions and challenges in developing new WGS methods. We aim to provide a better understanding of the current state of these methodologies with application to Salmonella and other foodborne pathogens that are common sources of illness in the poultry and human sectors.

3.
Emerg Infect Dis ; 28(6): 1154-1162, 2022 06.
Article in English | MEDLINE | ID: mdl-35608925

ABSTRACT

We tested swab specimens from pets in households in Ontario, Canada, with human COVID-19 cases by quantitative PCR for SARS-CoV-2 and surveyed pet owners for risk factors associated with infection and seropositivity. We tested serum samples for spike protein IgG and IgM in household pets and also in animals from shelters and low-cost neuter clinics. Among household pets, 2% (1/49) of swab specimens from dogs and 7.7% (5/65) from cats were PCR positive, but 41% of dog serum samples and 52% of cat serum samples were positive for SARS-CoV-2 IgG or IgM. The likelihood of SARS-CoV-2 seropositivity in pet samples was higher for cats but not dogs that slept on owners' beds and for dogs and cats that contracted a new illness. Seropositivity in neuter-clinic samples was 16% (35/221); in shelter samples, 9.3% (7/75). Our findings indicate a high likelihood for pets in households of humans with COVID-19 to seroconvert and become ill.


Subject(s)
COVID-19 , Cat Diseases , Dog Diseases , Animals , COVID-19/epidemiology , COVID-19/veterinary , Cat Diseases/epidemiology , Cats , Dog Diseases/diagnosis , Dog Diseases/epidemiology , Dogs , Immunoglobulin G , Immunoglobulin M , Ontario/epidemiology , Pets , Risk Factors , SARS-CoV-2
4.
Body Image ; 41: 331-341, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35460950

ABSTRACT

This study aimed to determine if a brief gratitude-focused meditation would significantly impact body dissatisfaction, and whether it would serve as a protective factor from exposure to thin idealized images in a sample of undergraduate women. 176 participants (Mage= 19.75) engaged in either a gratitude meditation, mindfulness meditation, or listened to a recording of a history textbook. Women were subsequently exposed to a set of neutral images or thin ideal images. Women reported significant decreases in state body dissatisfaction following all auditory conditions, regardless of auditory content. Decreased levels of body dissatisfaction persisted through exposure to neutral images, but not through exposure to thin ideal images. Results indicated that both the gratitude and mindfulness interventions were effective in eliciting a significant increase in self-reported levels of gratitude and mindfulness compared to controls. The results of the study suggest that auditory micro-interventions can decrease body dissatisfaction in young adult women. However, further investigation into the optimal modality, length, and frequency of micro-interventions aimed at buffering the negative effects of idealized thin image exposure on women is needed.


Subject(s)
Body Dissatisfaction , Meditation , Mindfulness , Body Image/psychology , Female , Humans , Personal Satisfaction , Students , Young Adult
5.
J Anim Ecol ; 91(4): 858-869, 2022 04.
Article in English | MEDLINE | ID: mdl-35218220

ABSTRACT

Migration is energetically expensive and is predicted to drive similar morphological adaptations and physiological trade-offs in migratory bats and birds. Previous studies suggest that fixed traits like wing morphology vary among species and individuals according to selective pressures on flight, while immune defences can vary flexibly within individuals as energy is variably reallocated throughout the year. We assessed intraspecific variation in wing morphology and immune function in silver-haired bats Lasionycteris noctivagans, a species that follows both partial and differential migration patterns. We hypothesized that if bats experience energy constraints associated with migration, then wing morphology and immune function should vary based on migratory tendency (sedentary or migratory) and migration distance. We predicted that long-distance migrants would have reduced immune function and more migration-adapted wing shapes compared to resident or short-distance migrating bats. We estimated breeding latitude of spring migrants using stable hydrogen isotope techniques. Our sample consisted primarily of male bats, which we categorized as residents, long-distance northern migrants, short-distance northern migrants and southern migrants (apparent breeding location south of capture site). Controlling for individual condition and capture date, we related wing characteristics and immune indices among groups. Some, but not all, aspects of wing form and immune function varied between migrants and residents. Long-distance northern migrants had larger wings than short-distance northern migrants and lower wing loading than southern migrants. Compared with resident bats, short-distance northern migrants had reduced IgG while southern migrants had heightened neutrophils and neutrophil-to-lymphocyte ratios. Body fat, aspect ratio, wing tip shape and bacteria killing ability did not vary with migration status or distance. In general, male silver-haired bats do not appear to mediate migration costs by substantially downregulating immune defences or to be under stronger selection for wing forms adapted for fast, energy-efficient flight. Such phenotypic changes may be more adaptive for female silver-haired bats, which migrate farther and are more constrained by time in spring than males. Adaptations for aerial hawking and the use of heterothermy by migrating bats may also reduce the energetic cost of migration and the need for more substantial morphological and physiological trade-offs.


Subject(s)
Chiroptera , Animal Migration , Animals , Chiroptera/physiology , Female , Immunity , Isotopes , Male , Wings, Animal
6.
Can Commun Dis Rep ; 48(6): 274-281, 2022 Jun 09.
Article in English | MEDLINE | ID: mdl-37333572

ABSTRACT

Background: Since April 2020, mink have been recognized as a potential reservoir for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and a potential source of new variants. The objective of this report is to describe the epidemiological investigation and public health response to two coronavirus disease 2019 (COVID-19) outbreaks that involved both humans and farmed mink. Methods: An outbreak was declared on December 4, 2020, following detection of two COVID-19-positive farmworkers and elevated mink mortality on a mink farm (Farm 1) in British Columbia. The second cluster was detected on Farm 3 following detection of 1) a COVID-19 case among farm staff on April 2, 2021, 2) an indeterminate result from farm staff on May 11, 2021, and 3) subsequent SARS-CoV-2-positive mink in May 2021. Quarantine of infected farms, isolation of workers and their close contacts, and introduction of enhanced infection control practises were implemented to break chains of transmission. Results: Among mink farmworkers, 11 cases were identified at Farm 1 and 6 cases were identified at Farm 3. On both Farm 1 and Farm 3, characteristic COVID-19 symptoms were present in farm employees before signs were observed in the minks. The viral sequences from mink and human samples demonstrated close genetic relation. Phylogenetic analyses identified mink intermediates linking human cases, suggesting anthropo-zoonotic transmission. Conclusion: These were the first COVID-19 outbreaks that included infected mink herds in Canada and identified potential anthropogenic and zoonotic transmission of SARS-CoV-2. We provide insight into the positive impact of regulatory control measures and surveillance to reduce the spillover of SARS-CoV-2 mink variants into the general population.

7.
Can Commun Dis Rep ; 48(6): 261-273, 2022 Jun 09.
Article in English | MEDLINE | ID: mdl-37333574

ABSTRACT

Background: Mink farms are susceptible to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) outbreaks and carry an associated risk of novel SARS-CoV-2 variant emergence and non-human reservoir creation. In Denmark, control measures were insufficient to prevent onward transmission of a mink-associated variant, contributing to the nation-wide culling of farmed mink. To date, British Columbia (BC) is the only Canadian province to report mink farm SARS-CoV-2 outbreaks. The objective of this study is to describe BC's One Health response to SARS-CoV-2-associated risk from mink farming, its outcomes, and insights from implementation. Methods: The detection of two mink farm outbreaks in December 2020 catalyzed BC's risk mitigation response for both infected and uninfected farms, including the following: farm inspections and quarantines; Public Health Orders mandating mink mortality surveillance, enhanced personal protective equipment, biosafety measures and worker coronavirus disease 2019 vaccination, at-a-minimum weekly worker viral testing, and wildlife surveillance. Results: A One Health approach enabled a timely, evidence-informed and coordinated response as the situation evolved, including the use of various legislative powers, consistent messaging and combined human and mink phylogenetic analysis. Ongoing mink and worker surveillance detected asymptomatic/subclinical infections and facilitated rapid isolation/quarantine to minimize onward transmission. Voluntary testing and mandatory vaccination for workers were acceptable to industry; enhanced personal protective equipment requirements were challenging. Regular farm inspections helped to assess and improve compliance. Conclusion: British Columbia's One Health response reduced the risk of additional outbreaks, viral evolution and reservoir development; however, a third outbreak was detected in May 2021 despite implemented measures, and long-term sustainability of interventions proved challenging for both industry and governmental agencies involved.

8.
Can Commun Dis Rep ; 48(6): 252-260, 2022 Jun 09.
Article in English | MEDLINE | ID: mdl-37342314

ABSTRACT

Background: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can infect many wild and domestic animal species. Farmed American mink (Neovison vison) are particularly susceptible to infection. Outbreaks of SARS-CoV-2 were detected in farmed mink on three mink farms in British Columbia (BC), Canada between December 2020 and May 2021. In BC, mink farm density and proximity to wildlife habitats increase transmission risks from infected farmed mink. The objective of this study is to investigate the risk of SARS-CoV-2 spreading to and from wildlife in the area surrounding infected mink farms in BC, Canada, as well as to compare the effectiveness of physical and camera trapping surveillance methodologies. Methods: A combination of physical and camera trapping was used on and around three BC mink farms with active SARS-CoV-2 infections between January 22, 2021, and July 10, 2021. Samples from trapped animals, including escaped farmed mink, were tested for SARS-CoV-2. Camera images from one mink farm were reviewed to determine species and proximity to the mink barn. Results: Seventy-one animals of nine species were captured and sampled. Three captured mink tested positive for SARS-CoV-2 by polymerase chain reaction and serology; the remaining samples were negative for SARS-CoV-2. Genotyping of the three positive mink indicated these were domestic (vs. wild) mink. A total of 440 animals of 16 species were photographed at the one farm where cameras were deployed. Conclusion: Detection of SARS-CoV-2 in escaped farmed mink is concerning and demonstrates the potential for transmission from farmed mink to wildlife, particularly given the observation of wildlife known to be susceptible to SARS-CoV-2 near infected mink farms. Combined use of physical and camera trapping contributed to the breadth of the results and is strongly recommended for future surveillance.

9.
Animals (Basel) ; 11(12)2021 Dec 06.
Article in English | MEDLINE | ID: mdl-34944252

ABSTRACT

Mortality of migratory bat species at wind energy facilities is a well-documented phenomenon, and mitigation and management are partially constrained by the current limited knowledge of bat migratory movements. Analyses of biochemical signatures in bat tissues ("intrinsic markers") can provide information about the migratory origins of individual bats. Many tissue samples for intrinsic marker analysis may be collected from living and dead bats, including carcasses collected at wind energy facilities. In this paper, we review the full suite of available intrinsic marker analysis techniques that may be used to study bat migration, with the goal of summarizing the current literature and highlighting knowledge gaps and opportunities. We discuss applications of the stable isotopes of hydrogen, oxygen, nitrogen, carbon, sulfur; radiogenic strontium isotopes; trace elements and contaminants; and the combination of these markers with each other and with other extrinsic markers. We further discuss the tissue types that may be analyzed for each and provide a synthesis of the generalized workflow required to link bats to origins using intrinsic markers. While stable hydrogen isotope techniques have clearly been the leading approach to infer migratory bat movement patterns across the landscape, here we emphasize a variety of lesser used intrinsic markers (i.e., strontium, trace elements, contaminants) that may address new study areas or answer novel research questions.

10.
Emerg Infect Dis ; 27(9): 2489-2491, 2021 09.
Article in English | MEDLINE | ID: mdl-34424169

ABSTRACT

We report a case of human infection with a Brucella canis isolate in an adult in Canada who was receiving a biologic immunomodulating medication. We detail subsequent investigations, which showed that 17 clinical microbiology staff had high-risk exposures to the isolate, 1 of whom had a positive result for B. canis.


Subject(s)
Brucella canis , Brucellosis , Adult , Brucella canis/genetics , Brucellosis/diagnosis , Brucellosis/drug therapy , Canada , Humans , Laboratories
11.
Vector Borne Zoonotic Dis ; 21(7): 490-497, 2021 07.
Article in English | MEDLINE | ID: mdl-33826423

ABSTRACT

Lyme disease, caused by Borrelia burgdorferi sensu lato (s.l.) complex, is the most common vector-borne disease in North America. This disease has a much lower incidence in western compared with eastern North America. Passive tick surveillance data submitted over 17 years from 2002 to 2018 were analyzed to determine the occurrence of tick species and the prevalence of Borrelia spp. in ticks in British Columbia (BC), Canada. The BC Centre for Disease Control Public Health Laboratory received tick submissions from physicians, veterinarians, and BC residents. Ticks were identified to species, and all ticks, except Dermacentor andersoni, were tested using generic B. burgdorferi s.l. primer sets and species-specific PCR primer sets for B. burgdorferi sensu stricto (s.s.). Tick submission data were analyzed to assess temporal and geographical trends, tick life stages, and tick species. Poisson regression was used to assess temporal trends in annual tick submissions. A total of 15,464 ticks were submitted. Among these, 0.29% (n = 10,235) of Ixodes spp. ticks and 5.3% (n = 434) of Rhipicephalus sanguineus ticks were found carrying B. burgdorferi s.s. B. burgdorferi s.s. was primarily detected in Ixodes pacificus (52%; n = 16) and Ixodes angustus ticks (19%; n = 6) retrieved from humans (n = 5) and animals (n = 26). B. burgdorferi was found in ticks submitted throughout the year. Ixodes spp. ticks were primarily submitted from the coastal regions of southwestern BC, and D. andersoni ticks were primarily submitted from southern interior BC. The number of human tick submissions increased significantly (p < 0.001) between 2013 and 2018. The annual prevalence of B. burgdorferi in ticks remained stable during the study period. These findings correspond to those observed in US Pacific Northwestern states. Passive tick surveillance is an efficient tool to monitor long-term trends in tick distribution and B. burgdorferi prevalence in a low endemicity region.


Subject(s)
Borrelia burgdorferi , Borrelia , Ixodes , Lyme Disease , Animals , Borrelia/genetics , Borrelia burgdorferi/genetics , British Columbia/epidemiology , Lyme Disease/epidemiology , Lyme Disease/veterinary
12.
Conserv Biol ; 35(2): 654-665, 2021 04.
Article in English | MEDLINE | ID: mdl-32537779

ABSTRACT

Collisions with buildings cause up to 1 billion bird fatalities annually in the United States and Canada. However, efforts to reduce collisions would benefit from studies conducted at large spatial scales across multiple study sites with standardized methods and consideration of species- and life-history-related variation and correlates of collisions. We addressed these research needs through coordinated collection of data on bird collisions with buildings at sites in the United States (35), Canada (3), and Mexico (2). We collected all carcasses and identified species. After removing records for unidentified carcasses, species lacking distribution-wide population estimates, and species with distributions overlapping fewer than 10 sites, we retained 269 carcasses of 64 species for analysis. We estimated collision vulnerability for 40 bird species with ≥2 fatalities based on their North American population abundance, distribution overlap in study sites, and sampling effort. Of 10 species we identified as most vulnerable to collisions, some have been identified previously (e.g., Black-throated Blue Warbler [Setophaga caerulescens]), whereas others emerged for the first time (e.g., White-breasted Nuthatch [Sitta carolinensis]), possibly because we used a more standardized sampling approach than past studies. Building size and glass area were positively associated with number of collisions for 5 of 8 species with enough observations to analyze independently. Vegetation around buildings influenced collisions for only 1 of those 8 species (Swainson's Thrush [Catharus ustulatus]). Life history predicted collisions; numbers of collisions were greatest for migratory, insectivorous, and woodland-inhabiting species. Our results provide new insight into the species most vulnerable to building collisions, making them potentially in greatest need of conservation attention to reduce collisions and into species- and life-history-related variation and correlates of building collisions, information that can help refine collision management.


Correlaciones de las Colisiones de Aves contra Edificios en Tres Países de América del Norte Resumen Las colisiones contra los edificios causan hasta mil millones de fatalidades de aves al año en los Estados Unidos y en Canadá. Sin embargo, los esfuerzos por reducir estas colisiones se beneficiarían con estudios realizados a grandes escalas espaciales en varios sitios de estudio con métodos estandarizados y considerando las variaciones relacionadas a la historia de vida y a la especie y las correlaciones de las colisiones. Abordamos estas necesidades de investigación por medio de una recolección coordinada de datos sobre las colisiones de aves contra edificios en los Estados Unidos (35), Canadá (3) y México (2). Recolectamos todos los cadáveres y los identificamos hasta especie. Después de retirar los registros de cadáveres no identificados, las especies sin estimaciones poblacionales a nivel distribución y las especies con distribuciones traslapadas en menos de diez sitios, nos quedamos con 269 cadáveres de 64 especies para el análisis. Estimamos la vulnerabilidad a colisiones para 40 especies con ≥2 fatalidades con base en la abundancia poblacional para América del Norte, el traslape de su distribución entre los sitios de estudio y el esfuerzo de muestreo. De las diez especies que identificamos como las más vulnerables a las colisiones, algunas han sido identificadas previamente (Setophaga caerulescens), y otras aparecieron por primera vez (Sitta carolinensis), posiblemente debido a que usamos una estrategia de muestreo más estandarizada que en los estudios previos. El tamaño del edificio y el área del vidrio estuvieron asociados positivamente con el número de colisiones para cinco de ocho especies con suficientes observaciones para ser analizadas independientemente. La vegetación alrededor de los edificios influyó sobre las colisiones solamente para una de esas ocho especies Catharus ustulatus). Las historias de vida pronosticaron las colisiones; el número de colisiones fue mayor para las especies migratorias, insectívoras y aquellas que habitan en las zonas boscosas. Nuestros resultados proporcionan una nueva perspectiva hacia las especies más vulnerables a las colisiones contra edificios, lo que las pone en una necesidad potencialmente mayor de atención conservacionista para reducir estas colisiones y de estudio de las variaciones relacionadas con la especie y la historia de vida y las correlaciones de las colisiones contra edificios, información que puede ayudar a refinar el manejo de colisiones.


Subject(s)
Conservation of Natural Resources , Songbirds , Animals , Canada , Mexico , North America , United States
13.
Can Commun Dis Rep ; 46(10): 354-361, 2020 Oct 01.
Article in English | MEDLINE | ID: mdl-33315999

ABSTRACT

BACKGROUND: Lyme disease is an emerging vector-borne zoonotic disease of increasing public health importance in Canada. As part of its mandate, the Canadian Lyme Disease Research Network (CLyDRN) launched a pan-Canadian sentinel surveillance initiative, the Canadian Lyme Sentinel Network (CaLSeN), in 2019. OBJECTIVES: To create a standardized, national sentinel surveillance network providing a real-time portrait of the evolving environmental risk of Lyme disease in each province. METHODS: A multicriteria decision analysis (MCDA) approach was used in the selection of sentinel regions. Within each sentinel region, a systematic drag sampling protocol was performed in selected sampling sites. Ticks collected during these active surveillance visits were identified to species, and Ixodes spp. ticks were tested for infection with Borrelia burgdorferi, Borrelia miyamotoi, Anaplasma phagocytophilum, Babesia microti and Powassan virus. RESULTS: In 2019, a total of 567 Ixodes spp. ticks (I. scapularis [n=550]; I. pacificus [n=10]; and I. angustus [n=7]) were collected in seven provinces: British Columbia, Manitoba, Ontario, Québec, New Brunswick, Nova Scotia and Prince Edward Island. The highest mean tick densities (nymphs/100 m2) were found in sentinel regions of Lunenburg (0.45), Montréal (0.43) and Granby (0.38). Overall, the Borrelia burgdorferi prevalence in ticks was 25.2% (0%-45.0%). One I. angustus nymph from British Columbia was positive for Babesia microti, a first for the province. The deer tick lineage of Powassan virus was detected in one adult I. scapularis in Nova Scotia. CONCLUSION: CaLSeN provides the first coordinated national active surveillance initiative for tick-borne disease in Canada. Through multidisciplinary collaborations between experts in each province, the pilot year was successful in establishing a baseline for Lyme disease risk across the country, allowing future trends to be detected and studied.

14.
PLoS One ; 15(5): e0233427, 2020.
Article in English | MEDLINE | ID: mdl-32437410

ABSTRACT

Bird-window collisions are the second leading cause of human-related avian mortality for songbirds in Canada. Our ability to accurately estimate the number of fatalities caused by window collisions is affected by several biases, including the removal of carcasses by scavengers prior to those carcasses being detected during surveys. We investigated the role of scavenger behavior in modifying perceived carcass removal rate while describing habitat-specific differences for the scavengers present in a relatively scavenger-depauperate island ecosystem. We used motion activated cameras to monitor the fate of hatchling chicken carcasses placed at building (under both windows and windowless walls) and forest (open and closed canopy) sites in western Newfoundland, Canada. We recorded the identity of scavengers, timing of events, and frequency of repeat scavenging at sites. Using 2 treatments, we also assessed how scavenging varied with 2 levels of carcass availability (daily versus every third day). Scavenger activities differed substantially between forest and building sites. Only common ravens (Corvus corax) removed carcasses at building sites, with 25 of 26 removals occurring under windows. Burying beetles (Nicrophorus spp.) dominated scavenging at forest sites (14 of 18 removals), completely removing carcasses from sight in under 24 hours. Availability had no effect on removal rate. These findings suggest that ravens look for carcasses near building windows, where bird-window collision fatalities create predictable food sources, but that this learning preceded the study. Such behavior resulted in highly heterogeneous scavenging rates at fine spatial scales indicating the need for careful consideration of carcass and camera placement when monitoring scavenger activity. Our observations of burying beetle activity indicate that future studies investigating bird collision mortality near forested habitats and with infrequent surveys, should consider local invertebrate community composition during survey design. The high incidence of invertebrate scavenging may compensate for the reduced vertebrate scavenger community of insular Newfoundland.


Subject(s)
Behavior, Animal , Ecosystem , Feeding Behavior , Islands , Songbirds , Animals , Coleoptera , Forests , Newfoundland and Labrador
15.
J Intensive Care Med ; 34(5): 383-390, 2019 May.
Article in English | MEDLINE | ID: mdl-28859578

ABSTRACT

OBJECTIVES:: Noise pollution in pediatric intensive care units (PICU) contributes to poor sleep and may increase risk of developing delirium. The Environmental Protection Agency (EPA) recommends <45 decibels (dB) in hospital environments. The objectives are to assess the degree of PICU noise pollution, to develop a delirium bundle targeted at reducing noise, and to assess the effect of the bundle on nocturnal noise pollution. METHODS:: This is a QI initiative at an academic PICU. Thirty-five sound sensors were installed in patient bed spaces, hallways, and common areas. The pediatric delirium bundle was implemented in 8 pilot patients (40 patient ICU days) while 108 non-pilot patients received usual care over a 28-day period. RESULTS:: A total of 20,609 hourly dB readings were collected. Hourly minimum, average, and maximum dB of all occupied bed spaces demonstrated medians [interquartile range] of 48.0 [39.0-53.0], 52.8 [48.1-56.2] and 67.0 [63.5-70.5] dB, respectively. Bed spaces were louder during the day (10AM to 4PM) than at night (11PM to 5AM) (53.5 [49.0-56.8] vs. 51.3 [46.0-55.3] dB, P < 0.01). Pilot patient rooms were significantly quieter than non-pilot patient rooms at night (n=210, 45.3 [39.7-55.9]) vs. n=1841, 51.2 [46.9-54.8] dB, P < 0.01). The pilot rooms compliant with the bundle had the lowest hourly nighttime average dB (44.1 [38.5-55.5]). CONCLUSIONS:: Substantial noise pollution exists in our PICU, and utilizing the pediatric delirium bundle led to a significant noise reduction that can be perceived as half the loudness with hourly nighttime average dB meeting the EPA standards when compliant with the bundle.


Subject(s)
Delirium/prevention & control , Intensive Care Units, Pediatric/standards , Noise/prevention & control , Patient Care Bundles/instrumentation , Patients' Rooms/standards , Child , Delirium/etiology , Female , Humans , Male , Noise/adverse effects , Pilot Projects , Quality Improvement
18.
Mol Ecol ; 23(15): 3618-32, 2014 08.
Article in English | MEDLINE | ID: mdl-24274182

ABSTRACT

Variation in prey resources influences the diet and behaviour of predators. When prey become limiting, predators may travel farther to find preferred food or adjust to existing local resources. When predators are habitat limited, local resource abundance impacts foraging success. We analysed the diet of Myotis lucifugus (little brown bats) from Nova Scotia (eastern Canada) to the Northwest Territories (north-western Canada). This distribution includes extremes of season length and temperature and encompasses colonies on rural monoculture farms, and in urban and unmodified areas. We recognized nearly 600 distinct species of prey, of which ≈30% could be identified using reference sequence libraries. We found a higher than expected use of lepidopterans, which comprised a range of dietary richness from ≈35% early in the summer to ≈55% by late summer. Diptera were the second largest prey group consumed, representing ≈45% of dietary diversity early in the summer. We observed extreme local dietary variability and variation among seasons and years. Based on the species of insects that were consumed, we observed that two locations support prey species with extremely low pollution and acidification tolerances, suggesting that these are areas without environmental contamination. We conclude that there is significant local population variability in little brown bat diet that is likely driven by seasonal and geographical changes in insect diversity, and that this prey may be a good indicator of environment quality.


Subject(s)
Chiroptera/physiology , Diet , Insecta/classification , Predatory Behavior , Animals , Canada , Ecosystem , Environmental Monitoring , Seasons , Sequence Analysis, DNA , Spatio-Temporal Analysis
19.
PLoS One ; 7(2): e31419, 2012.
Article in English | MEDLINE | ID: mdl-22384019

ABSTRACT

BACKGROUND: Annual movements of tri-colored bats (Perimyotis subflavus) are poorly understood. While this species has been considered a regional migrant, some evidence suggests that it may undertake annual latitudinal migrations, similar to other long distance North American migratory bat species. METHODOLOGY/PRINCIPAL FINDINGS: We investigated migration in P. subflavus by conducting stable hydrogen isotope analyses of 184 museum specimen fur samples and comparing these results (δD(fur)) to published interpolated δD values of collection site growing season precipitation (δD(precip)). Results suggest that the male molt period occurred between June 23 and October 16 and 33% of males collected during the presumed non-molt period were south of their location of fur growth. For the same time period, 16% of females were south of their location of fur growth and in general, had not travelled as far as migratory males. There were strong correlations between δD(fur) from the presumed molt period and both growing season δD(precip) (males--r(2) = 0.86; p<0.01; females--r(2) = 0.75; p < 0.01), and latitude of collection (males--r(2) = 0.85; p<0.01; females--r(2) = 0.73; p<0.01). Most migrants were collected at the northern (>40 °N; males and females) and southern (<35 °N; males only) extents of the species' range. CONCLUSIONS/SIGNIFICANCE: These results indicate a different pattern of migration for this species than previously documented, suggesting that some P. subflavus engage in annual latitudinal migrations and that migratory tendency varies with latitude and between sexes. We suggest that this species' hibernation ecology makes it particularly susceptible to long winters, making migration from the northern extent of the species' range to more southern hibernacula preferable for some individuals. Fur δD values for some of the northern individuals may indicate an increase in the currently accepted northern range of this species. Sex-biased differences in migration may be the result of differences in reproductive pressures.


Subject(s)
Animal Migration , Chiroptera/physiology , Animals , Ecology , Female , Geography , Hibernation , Male , North America , Population Dynamics , Seasons , Species Specificity , Time Factors
20.
Mol Ecol ; 18(11): 2532-42, 2009 Jun.
Article in English | MEDLINE | ID: mdl-19457192

ABSTRACT

One of the most difficult interactions to observe in nature is the relationship between a predator and its prey. When direct observations are impossible, we rely on morphological classification of prey remains, although this is particularly challenging among generalist predators whose faeces contain mixed and degraded prey fragments. In this investigation, we used a polymerase chain reaction and sequence-based technique to identify prey fragments in the guano of the generalist insectivore, the eastern red bat (Lasiurus borealis), and evaluate several hypotheses about prey selection and prey defences. The interaction between bats and insects is of significant evolutionary interest because of the adaptive nature of insect hearing against echolocation. However, measuring the successes of predator tactics or particular prey defences is limited because we cannot normally identify these digested prey fragments beyond order or family. Using a molecular approach, we recovered sequences from 89% of the fragments tested, and through comparison to a reference database of sequences, we were able to identify 127 different species of prey. Our results indicate that despite the robust jaws of L. borealis, most prey taxa were softer-bodied Lepidoptera. Surprisingly, more than 60% of the prey species were tympanate, with ears thought to afford protection against these echolocating bats. Moths of the family Arctiidae, which employ multiple defensive strategies, were not detected as a significant dietary component. Our results provide an unprecedented level of detail for the study of predator-prey relationships in bats and demonstrate the advantages which molecular tools can provide in investigations of complex ecological systems and food-web relationships.


Subject(s)
Chiroptera/physiology , Lepidoptera/genetics , Moths/genetics , Predatory Behavior , Animals , DNA, Mitochondrial/genetics , Ecosystem , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL
...